EWAD100E-SL EWAD120E-SL EWAD130E-SL EWAD160E-SL EWAD180E-SL EWAD210E-SL EWAD250E-SL EWAD300E-SL EWAD350E-SL EWAD400E-SL
Poziom ciśn. akust. Chłodzenie Nom. dBA 71 (2) 71 (2) 71 (2) 71 (2) 71 (2) 73 (2) 73 (2) 73 (2) 73 (2) 74 (2)
Zakres pracy Strona powietrzna Chłodzenie Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
      Maks. °CDB 48 48 48 48 48 48 48 48 48 48
  Strona wodna Chłodzenie Maks. °CDB 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -15 -15 -15 -15 -15 -15 -15 -15 -15 -15
Ilość Na obwód kg 18.0 21.0 23.0 28.0 34.0 39.0 46.0 46.0 56.0 74.0
  Na obwód TCO2Eq 25.7 30.0 32.9 40.0 48.6 55.8 65.8 65.8 80.1 105.8
Sprężarka Olej Objętość ładowana l 13 13 13 13 13 13 16 19 19 19
  Ilość_ Sprężarka jednośrubowa Sprężarka jednośrubowa Sprężarka jednośrubowa Sprężarka jednośrubowa Sprężarka jednośrubowa Sprężarka jednośrubowa Sprężarka jednośrubowa o profilu asymetrycznym Sprężarka jednośrubowa o profilu asymetrycznym Sprężarka jednośrubowa o profilu asymetrycznym Sprężarka jednośrubowa o profilu asymetrycznym
Weight Ciężar operacyjny kg 1,799 1,799 1,981 1,981 2,216 2,216 3,073 3,073 3,073 3,073
  Jednostka kg 1,784 1,784 1,961 1,961 2,186 2,186 3,029 3,029 3,029 3,029
Powietrzny wymiennik ciepła Typ Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem Wysokowydajny żeberkowy i rurowy z wbudowanym dochładzaczem
Czynnik chłodniczy Obwody Ilość 1 1 1 1 1 1 1 1 1 1
  Refrigerant-=-Refrigerant type 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
Silnik wentylatora Wejście Chłodzenie W 1,600 1,600 2,400 2,400 3,100 3,100 4,700 4,700 4,700 4,700
  Napęd Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio
Wydajność chłodnicza Nom. kW 97.6 (1) 116 (1) 134 (1) 157 (1) 177 (1) 208 (1) 248 (1) 295 (1) 344 (1) 397 (1)
Połączenia instalacji rurowej Piping connections-=-Evaporator water inlet outlet od 3" 3" 3" 3" 3" 3" 3" 3" 3" 3"
Wodny wymiennik ciepła Objętość wody l 12 15 17 20 24 30 25 30 36 44
  Spadek ciś. wody Chłodzenie Nom. kPa 23 23 22 23 21 20 45 45 44 42
  Szybkość przepł. wody Chłodzenie Nom. l/s 4.7 5.5 6.4 7.5 8.4 10.0 11.9 14.1 16.5 19.0
  Materiał izolacyjny Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła
Pobór mocy Chłodzenie Nom. kW 39.2 (1) 48.3 (1) 53.4 (1) 60.8 (1) 68.3 (1) 72.8 (1) 85.4 (1) 111 (1) 135 (1) 152 (1)
Poziom mocy akustycznej Chłodzenie Nom. dBA 89 89 90 90 90 92 92 92 92 93
Wymiary Jednostka Szerokość mm 1,292 1,292 1,292 1,292 1,292 1,292 2,236 2,236 2,236 2,236
    Głębokość mm 2,165 2,165 3,065 3,065 3,965 3,965 3,070 3,070 3,070 3,070
    Wysokość mm 2,273 2,273 2,273 2,273 2,273 2,273 2,223 2,223 2,223 2,223
Regulator wydajności Minimalna wydajność % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
  Method Bezstopniowe Bezstopniowe Bezstopniowe Bezstopniowe Bezstopniowe Bezstopniowe Bezstopniowe Bezstopniowe Bezstopniowe Bezstopniowe
Obudowa Colour Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa Galwanizowana i powlekana blacha stalowa
Wentylator Średnica mm 800 800 800 800 800 800 800 800 800 800
  Przepływ powietrza Nom. l/s 8,373 8,144 12,560 12,216 16,747 16,288 25,120 25,120 24,432 24,432
  Prędkość obr/min_ 700 700 700 700 700 700 700 700 700 700
  Ilość Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni Wirnik bezpośredni
Eer 2.92 2.88 2.76 2.91 2.98 3.22 3.44 3.31 3.24 3.35
Wentylatory Nominalny prąd roboczy A 5 5 8 8 10 10 16 16 16 16
Sprężarka Maksymalny prąd roboczy A 78 95 107 120 141 148 174 218 260 274
  Zakres napięcia Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Maks. % 10 10 10 10 10 10 10 10 10 10
  Napięcie V 400 400 400 400 400 400 400 400 400 400
  Metoda uruchomienia_ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
Zasilanie Zakres napięcia Maks. % 10 10 10 10 10 10 10 10 10 10
    Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Częstotliwość Hz 50 50 50 50 50 50 50 50 50 50
  Napięcie V 400 400 400 400 400 400 400 400 400 400
  Faza 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
Jednostka Maks. prąd jednostki dla wymiarowania przewodów A 91 109 126 140 165 173 207 256 302 317
  Prąd rozruch. Maks. A 151 151 195 195 288 288 330 410 410 410
  Prąd roboczy Chłodzenie Nom. A 67 83 92 103 116 122 144 184 223 249
    Maks. A 83 100 115 128 151 158 189 234 276 290
Uwagi Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu.
  Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744
  Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%.
  Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 % Maksymalny prąd rozruchowy : prąd rozruchowy największej sprężarki + 75 % maksymalnego prądu drugiej sprężarki + prąd wentylatorów dla obwodu przy 75 %
  Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów.
  Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory
  Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu.
  Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1
  Ciecz: Woda Ciecz: Woda Ciecz: Woda Ciecz: Woda Ciecz: Woda Ciecz: Woda Ciecz: Woda Ciecz: Woda Ciecz: Woda Ciecz: Woda
  Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS).
  Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu.