Specifications Table for EWAQ-F-XR

EWAQ170F-XR (Archived) EWAQ190F-XR (Archived) EWAQ210F-XR (Archived) EWAQ240F-XR (Archived) EWAQ300F-XR (Archived) EWAQ310F-XR (Archived) EWAQ330F-XR (Archived) EWAQ340F-XR (Archived) EWAQ390F-XR (Archived) EWAQ410F-XR (Archived) EWAQ430F-XR (Archived) EWAQ500F-XR (Archived) EWAQ580F-XR (Archived) EWAQ650F-XR (Archived)
Poziom ciśnienia akustycznego Chłodzenie Nom. dBA 64 65 66 67 67 68 67 68 69 70 70 69 70 71
Zakres pracy Strona powietrzna Chłodzenie Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
      Maks. °CDB 52 52 52 52 52 52 52 52 52 52 52 52 52 52
  Strona wody Chłodzenie Maks. °CDB 18 18 18 18 18 18 18 18 18 18 18 18 18 18
      Min. °CDB -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13
Ładunek czynnika chłodniczego Refrigerant charge-=-Per circuit-=-TCO2Eq TCO2Eq 29.2 32.4 34.4 41.8 50.1 54.3 54.3 54.3 64.7 64.7 64.7 73.1 75.2 86.6
Sprężarka Typ   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Ilość_   4 4 4 4 4 4 4 4 4 4 4 6 6 6
Powietrzny wymiennik ciepła Typ   Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi Wysokowydajny z rurkami żebrowanymi
Ciężar Ciężar operacyjny kg 2,017 2,317 2,594 2,736 2,914 3,014 3,085 3,185 3,208 3,326 3,344 4,166 4,288 4,716
  Jednostka kg 2,004 2,303 2,580 2,722 2,900 3,000 3,045 3,145 3,168 3,280 3,298 4,120 4,228 4,655
EER 3.123 3.073 3.077 3.051 3.003 3.003 2.916 2.916 3.007 2.988 2.959 2.963 2.903 2.95
ESEER 4.53 4.64 4.51 4.6 4.53 4.68 4.44 4.63 4.68 4.64 4.54 4.82 4.69 4.65
Czynnik chłodniczy GWP   2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088 2,088
  Typ   R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A
  Obwody Ilość   2 2 2 2 2 2 2 2 2 2 2 2 2 2
  Dopełnienie kg 28 31 33 40 48 52 52 52 62 62 62 70 72 83
Wydajność chłodnicza Nom. kW 165.4 187.9 211.4 235.8 304.2 304.2 339.9 339.9 385.1 407.1 432.6 502.3 579.4 645.1
Wodny wym. ciepła Objętość wody l 12 14 14 14 14 14 40 40 40 46 46 46 60 60
  Typ   Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła Płytowy wymiennik ciepła
Power input Chłodzenie Nom. kW 52.97 61.16 68.7 77.28 101.3 101.3 116.6 116.6 128.1 136.2 146.2 169.6 199.6 218.7
Sound power level Chłodzenie Nom. dBA 83 84 85 86 87 87 87 87 89 89 90 89 90 92
Wymiary Jednostka Szerokość mm 1,224 1,224 1,224 1,224 1,224 2,258 1,224 2,258 2,258 2,258 2,258 2,258 2,258 2,258
    Głębokość mm 4,413 4,413 5,313 5,313 6,213 3,210 6,213 3,210 4,110 4,110 4,110 5,010 5,010 5,910
    Wysokość mm 2,271 2,271 2,271 2,271 2,271 2,221 2,271 2,221 2,221 2,221 2,221 2,221 2,221 2,221
Regulator wydajności Minimalna wydajność % 25 50 25 25 25 25 33 27 33 21 21 25 25 25
  Metoda   Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged Staged
Wentylator Przepływ powietrza Nom. l/s 16,743 16,285 20,618 19,522 24,428 24,428 23,426 23,426 32,570 31,235 31,235 39,044 39,044 46,852
  Prędkość obr/min_ 705 705 705 705 705 705 705 705 705 705 705 705 705 705
Sprężarka Metoda uruchomienia_   Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio Dołączony bezpośrednio
Power supply liczba faz   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Częstotliwość Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Napięcie V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Uwagi (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu. (1) - Chłodzenie: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu.
  (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744 (2) - Poziomy ciśnienia akustycznego zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza atmosferycznego 35°C; praca przy pełnym obciążeniu; norma: ISO3744
  (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda (3) - Ciecz: Woda
  (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (4) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%.
  (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (5) - Maksymalny prąd rozruchowy: prąd rozruchowy największej sprężarki + prąd innych sprężarek przy maksymalnym obciążeniu + prąd wentylatorów przy maksymalnym obciążeniu. W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy.
  (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów. (6) - Nominalny prąd w trybie chłodzenia: temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. powietrza otoczenia 35°C. Sprężarka + prąd wentylatorów.
  (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory (7) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie i maks. wartości prądu pobieranego przez wentylatory
  (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (8) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu.
  (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1 (9) - Maksymalny prąd dla wymiarowania przewodów: (sprężarki o pełnym obciążeniu amperowym + prąd wentylatorów) x 1,1
  (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS).
  (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu.