Specifications Table for EWWH-VZXS

EWWH335VZXSA1 EWWH365VZXSA1 EWWH450VZXSA1 EWWH525VZXSA1 EWWH580VZXSA1 EWWH670VZXSA1 EWWH800VZXSA1 EWWH875VZXSA2 EWWH950VZXSA2 EWWHC11VZXSA2 EWWHC12VZXSA2 EWWHC13VZXSA2 EWWHC14VZXSA2 EWWHC15VZXSA2
Wydajność chłodnicza Nom. kW 329 365 448 521 579 665 788 877 952 1,029 1,169 1,288 1,422 1,540
Regulator wydajności Metoda   Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna Zmienna
  Minimalna wydajność % 20 20 20 20 20 20 20 10 10 10 10 10 10 10
Power input Chłodzenie Nom. kW 60.5 66.6 81 96 109 121 147 168 185 198 224 248 276 298
EER 5.44 5.48 5.53 5.42 5.29 5.49 5.37 5.23 5.16 5.19 5.22 5.19 5.16 5.16
ESEER 7.14 7.56 8.32 8.32 8.34 8.46 8.55 8.26 8.26 8.5 8.54 8.81 8.61 8.72
Wymiary Jednostka Głębokość mm 3,722 3,722 3,750 3,690 3,690 3,822 3,822 4,792 4,792 4,508 4,508 4,750 4,874 4,874
    Wysokość mm 2,135 2,135 2,123 2,235 2,235 2,487 2,487 2,296 2,296 2,301 2,350 2,500 2,469 2,493
    Szerokość mm 1,178 1,178 1,179 1,189 1,189 1,303 1,303 1,484 1,639 1,579 1,580 1,610 1,704 1,769
Ciężar Jednostka kg 2,968 2,911 3,102 3,470 3,451 4,257 4,552 5,860 6,240 6,520 6,920 7,530 7,790 8,670
  Ciężar operacyjny kg 3,098 3,006 3,274 3,648 3,611 4,518 4,860 6,370 6,760 7,130 7,530 8,300 8,560 9,630
Wodny wymiennik ciepła - parownik Typ   Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura Zalana obudowa i rura
  Objętość wody l 70 88 136 134 134 168 199 270 270 320 320 380 480 480
Sprężarka Typ   Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem Sprężarka jednośrubowa z inwerterem
  Ilość_   1 1 1 1 1 1 1 2 2 2 2 2 2 2
Poziom mocy akustycznej Chłodzenie Nom. dBA 97 99 101 105 105 105 107 106 106 107 107 108 109 110
Poziom ciśnienia akustycznego Chłodzenie Nom. dBA 78 80 82 86 86 86 88 87 87 88 88 89 89 90
Czynnik chłodniczy Typ   R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze)
  Charge kg 95 95 100 110 170 170 180 250 260 290 290 320 320 350
  Obwody Ilość   1 1 1 1 1 1 1 2 2 2 2 2 2 2
  GWP   7 7 7 7 7 7 7 7 7 7 7 7 7 7
Power supply liczba faz   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Częstotliwość Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Napięcie V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Uwagi (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0 (1) - Podstawą parametrów wydajnościowych (wydajności chłodniczej, poboru mocy w trybie chłodzenia oraz EER) są następujące warunki: parownik 12,0/7,0°C; temperatura otoczenia 30/35,0°C; jednostka przy pełnym obciążeniu, czynnik roboczy: woda, współczynnik oporu cieplnego osadu = 0
  (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744 (2) - Dane na temat poziomu hałasu zostały zmierzone przy temp. wody parownika na wlocie 12°C; temp. wody parownika na wylocie 7°C; temp. wody skraplacza na wlocie 30°C; temp. wody skraplacza na wylocie 35°C; praca w trybie pełnego obciążenia; standard: ISO3744
  (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%. (3) - Dopuszczalna tolerancja napięcia ± 10%. Asymetria napięcia pomiędzy fazami musi znajdować się w granicach ± 3%.
  (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C (4) - Nominalny prąd roboczy w trybie chłodzenia odnosi się do następujących warunków: parownik 12°C/7°C; skraplacz 30°C/35°C
  (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie (5) - Maksymalny prąd pracy opiera się na maks. wartości prądu pobieranego przez sprężarkę w jej obudowie
  (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu. (6) - Maksymalny prąd jednostki dla wymiarowania przewodów opiera się na minimalnym dopuszczalnym napięciu.
  (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1 (7) - Maksymalny prąd dla wymiarowania przewodów: sprężarka o pełnym obciążeniu amperowym x 1,1
  (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji. (8) - Wszystkie dane dotyczą standardowych jednostek bez opcji.
  (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki. (9) - Wszystkie dane mogą ulec zmianie bez powiadomienia. Zapoznać się z danymi na tabliczce znamionowej jednostki.
  (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS). (10) - Informacje szczegółowe na temat limitów operacyjnych można znaleźć w oprogramowaniu doboru agregatu chłodzącego (CSS).
  (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu. (11) - Urządzenie zawiera fluorowane gazy cieplarniane. Rzeczywisty ładunek czynnika chłodniczego zależy od finalnej konstrukcji jednostki, a szczegóły można znaleźć na etykietach na urządzeniu.
  (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy. (12) - W przypadku jednostek ze sterowaniem inwerterowym, podczas rozruchu nie występuje początkowy prąd rozruchowy.